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The origin of interactions
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The complexity of complex diseases
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There are likely to be many
susceptibility genes each
with combinations of rare
and common alleles and
genotypes that impact
disease susceptibility
primarily through non-linear
interactions with genetic and
environmental factors

(Moore 2008)
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Factors complicating analysis of complex genetic disease

Locus Heterogeneity

Trait Heterogeneity

Gene-Gene Interaction

268000) - genetic variations in at least
fifteen genes have been associated
with RP under an autosomal recessive
model. Still more have been
associated with RP under autosomal
dominant and X-linked disease
models?
(http://www.sph.uth.tmc.edu/RetNet)

(ADCA, OMIM# 164500) - originally

described as a single disease, three different

clinical subtypes have been defined based
on variable associated symptoms %7 and
different genetic loci have been associated
with the different subtypes®

Definition when two or more DNA variations in when a trait, or disease, has been defined when two or more DNA variations interact
distinct genetic loci are independently with insufficient specificity such that it is either directly (DNA-DNA or DNA-mRNA
associated with the same trait actually two or more distinct underlying traits | interactions), to change transcription or

translation levels, or indirectly by way of
their protein products, to alter disease risk
separate from their independent effects

Diagram Allelic Varianti  Allelic Variant ii o i A'gpf_ Va"axt i A"g'fi‘i_va”ag‘ I

Of Locus A Of Locus B ?cus EuR
|
v
i Disease X
Cissdse No Disease Disease X
Example Retinitis Pigmentosa (RP, OMIM# Autosomal Dominant Cerebellar Ataxia Hirschsprung Disease (OMIM# 142623) -

variants in the RET (OMIM# 164761) and
EDNRB (OMIM# 131244) genes have
been shown to interact synergistically such
that they increase disease risk far beyond
the combined risk of the independent
variants'2
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Factors complicating analysis of complex genetic disease

Gene-gene interactions

.. when two or more DNA variations interact either directly to change
transcription or translation levels, or indirectly by way of their protein
product, to alter disease risk separate from their independent effects ...
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The “observed” occurrences of epistasis — model organisms
e Carlborg and Haley (2004):

- Epistatic QTLs without individual effects have been found in

. . . 26,27 28-32
various organisms, such as birds

33 18,34
melanogaster™ and plants™".

, mammals™ ~°, Drosophila

- However, other similar studies have reported only low levels of
epistasis or no epistasis at all, despite being thorough and

. . . 35-37
involving large sample sizes :

This clearly indicates the complexity with which multifactorial traits are
regulated; no single mode of inheritance can be expected to be the
rule in all populations and traits.

Université o
de Liege -



K Van Steen Seoul — February 2013

Great expectations

e From an evolutionary biology perspective, for a phenotype to be
buffered against the effects of mutations, it must have an underlying
genetic architecture that is comprised of networks of genes that are
redundant and robust.

e The existence of these networks creates dependencies among the
genes in the network and is realized as gene-gene interactions or
(trans-) epistasis.

e This suggests that epistasis is not only important in determining
variation in natural and human populations, but should also be more
widespread than initially thought (rather than being a limited
phenomenon).

i 1
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Great expectations - empowering personal genomics

e Considering the epic complexity of the transcriptions process, the
genetics of gene expression seems just as likely to harbor epistasis as
biological pathways.

e When examining HapMap genotypes and gene expression levels from
corresponding cell lines to look for cis-epistasis, over 75 genes pop up
where SNP pairs in the gene's regulatory region can interact to
influence the gene's expression.

e What is perhaps most interesting is that there are often large
distances between the two interacting SNPs (with minimal LD
between them), meaning that most haplotype and sliding window
approaches would miss these effects. (Turner and Bush 2011)
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Complementing insights from GWA studies

Edges represent small gene—gene
interactions between SNPs. Gray nodes
and edges have weaker interactions.
Circle nodes represent SNPs that do not
have a significant main effect. The
diamond nodes represent significant
main effect association. The size of the

node is proportional to the number of

connections.

(McKinney et al 2012)
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Epistasis and phantom heritability

(Maher 2008)
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Epistasis and phantom heritability

e Human genetics has been haunted by the mystery of “missing
heritability” of common traits.

e Although studies have discovered >1,200 variants associated with
common diseases and traits, these variants typically appear to
explain only a minority of the heritability.

e The proportion of heritability explained by a set of variants is the
ratio of (i) the heritability due to these variants (numerator),
estimated directly from their observed effects, to (ii) the total
heritability (denominator), inferred indirectly from population data.

e The prevailing view has been that the explanation for missing
heritability lies in the numerator — variants still to identify

Université o
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Epistasis and phantom heritability

e Overestimation of the total heritability can create “phantom
heritability.”
- estimates of total heritability implicitly assume the trait involves
no genetic interactions (epistasis) among loci

- this assumption is not justified

- under such models, the total heritability may be much smaller
and thus the proportion of heritability explained much larger.

e For example, 80% of the currently missing heritability for Crohn's
disease could be due to genetic interactions, if the disease involves
interaction among three pathways. (Zuk et al 2012)
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Traveling the world of interactions
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Nonlinear Effects e Most SNPs of interest will only

. The High-Hanging Fruit

be found by embracing the
complexity of the genotype-to-
phenotype mapping
relationship that is likely to be
characterized by nonlinear
gene-gene interactions, gene-
environment interaction and
locus heterogeneity.

Linear Effects
L, The Low-Hanging Fruit

e Few SNPs with moderate to

large independent and additive .
(Moore and Williams 2009)

main effects
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From GWA to GWAI studies ...

e Genome-Wide Association Interaction (GWAI) studies have not been
as successful as GWA studies:

- Possible negligible role of epistatic variance in a population?
(Davierwala et al 2005)

- Consequence of not yet available powerful epistasis detection
methods or approaches?

“ Gene-gene interactions are commonly found when properly investigated ”
(Templeton 2000)
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How to best build our working space
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Creating an atmosphere of “interdisciplinarity”
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(http://www.genome.gov: the future of human genomics) + harmonization of biobanks
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Creating an atmosphere of “integration”

with HTP omics data (J Thornton, EBI)
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Extending the toolbox

(Kilpatrick 2009)

Computational methods
for detecting statistical
epistasis
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Extending the toolbox
e Why?
- LD between markers
- Long-distance between-marker associations
- Missing data handling
- Multi-stage designs: marker selection and subsequent testing
- Multiple testing handling

- Population stratification and admixture

- Meta-analysis

Université o
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Extending the toolbox

e Comes with a caveat: need for thorough comparison studies using
reference data sets!

e Several criteria exist to classify epistasis detection methods:

Exploratory versus non-exploratory

Testing versus Modeling

Direct versus Indirect testing

Parametric versus non-parametric

Exhaustive versus non-exhaustive search algorithms

... (Van Steen et al 2011)
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The “observed” occurrences of epistasis — humans
e Phillips et al (2008):

- There are several cases of epistasis appearing as a statistical
feature of association studies of human disease.

. . 63

- A few recent examples include coronary artery disease ",
. 64 . . . 65 . 66
diabetes™, bipolar effective disorder™", and autism .

- So far, only for some of the reported findings additional support
could be provided by functional analysis, as was the case for
multiple sclerosis (Gregersen et al 2006).

e More recent examples: e.g., breast cancer (Ashworth et al. 2011),
Alzheimer’s (Combarros et al 2009),

Université o
de Liege -



K Van Steen Seoul — February 2013

Taking it a few steps back ... What’s in a name?

e Wikipedia (23/04/2012) ... Epistasis and genetic interaction refer

to different aspects of the same

In genetics, epistasis is the phenomenon
phenomenon ...

where the effects of one gene are
modified by one or several other genes,
which are sometimes called modifier
genes. The gene whose phenotype is

_ . . _ , ... Studying genetic interactions can
expressed is called epistatic ... Epistasis

_ o _ reveal gene function, the nature of the
is often studied in relation to
Quantitative Trait Loci (QTL) and

polygenic inheritance...

mutations, functional redundancy, and
protein interactions. Because protein
complexes are responsible for most
biological functions, genetic interactions
are a powerful tool ...
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Taking it a few steps back ... What’s in a name?
e Our ability to detect epistasis depends on what we mean by epistasis

“compositional epistasis”

e The original definition (driven by biology) refers to distortions of
Mendelian segregation ratios due to one gene masking the effects of
another; a variant or allele at one locus prevents the variant at
another locus from manifesting its effect (william Bateson 1861-1926).

,, E
ﬂﬂ” (Carlborg and

Haley 2004)

Dominant white
genotype (KIT)

Exten3|on genotype MC1 F?
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Compositional epistasis

e Example of phenotypes (e.g. hair colour) from different genotypes at
2 loci interacting epistatically under Bateson's (1909) definition:

Genotype at gg gG GG
locus B/G
bb White Grey Grey
bB Black Grey Grey
BB Black Grey Grey

The effect at locus B is masked by that of locus G: locus G is epistatic to locus B.
(Cordell 2002)

Université S UNIVERSITAT ZU LUBECK
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Taking it a few steps back ... What’s in a name?

“statistical epistasis”

e A later definition of epistasis (driven by statistics) is expressed in
terms of deviations from a model of additive multiple effects.

e This might be on either a linear or logarithmic scale, which implies
different definitions (Ronald Fisher 1890-1962).

e |t seems that the interpretation of GWAIs is hampered by undetected
false positives
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Components of an Epistasis Analysis
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Any epistasis analysis is characterized by at least 2 of the
following components

e Variable selection
e Modeling / testing
e Significance assessment

e Interpretation
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Variable Selection
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Why selecting variables?
Introduction

e The aim is to make “clever” selections of markers or marker
combinations to look at in the association analysis

e This may not only aid in the interpretation of analysis results, but also
reduced the burden of multiple testing and the computational
burden

..,:j:
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Variable selection in main effects GWAS

Multi-stage Single-stage
- Less expensive - More expensive
- More complicated - Less complicated
- Less powerful - More powerful

STUDY SAMPLE

SNPsa

(slide: courtesy of McQueen)
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Variable selection in interaction effects GWAS

e Several strategies can be adopted to select the number of genetic
variants to be used for epistasis screening.

e Strategy | involves performing an exhaustive search
AN
AL

S Address several computational issues and confront a
severe multiple testing problem.
e Strategy Il involves selecting genetic markers based on the statistical
significance or strength of their singular main effects (Kooperberg et
al 2008).

AN
y 1AV |

b Address the difficulty in finding gene-gene interactions
when the underlying disease model is purely epistatic.

ﬂiz';nr
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Variable selection in interaction effects GWAS

e Strategy lll involves prioritizing sets of genetic markers based on
feature selection methods.

A
£ 7o) (®) )
A4 |

b Address finding your way into the jungle of different
possible feature selection methods and algorithms

e Strategy IV involves prioritizing sets of genetic markers based on

(prior) expert knowledge

bt Address biasing of findings towards “what is already
known”.

8
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Feature selection methods

e |n contrast to other dimensionality reduction techniques like those
based on projection (e.g., principal components analysis), feature
selection techniques do not change the original presentation of the
variables

e Hence, feature selection does not only reduce the burden of multiple
testing, but also aids in the interpretation of analysis results

Université o
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Feature selection methods

e Filter techniques assess the relevance of features by looking only at
the intrinsic properties of the data. In most cases a feature relevance
score is calculated, and low-scoring features are removed.

e Wrapper techniques involve a search procedure in the space of
possible feature subsets, and an evaluation of specific subsets of
features. The evaluation of a specific subset of features is obtained
by training and testing a specific classification model.

e Embedded techniques involve a search in the combined space of
feature subsets and hypotheses. Hence, the search for an optimal
subset of features is built into the classifier construction.

(Saeys et al 2007)
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Feature selection methods

Model search Advantages Disadvantages Examples
Filter Unmivarate
Fast [gnores feature dependencies ¥
Scalable [gnores interaction with Euclidean distance
Independent of the classifier the classifier i-test
Information gain,
— Gain ratio (Ben-Bassat, 1982)
— Multivanate
C ==
Models feature dependencies Slower than univariate technigques Correlation-based feature
Independent of the classifier Less scalable than univarate selection (CFS) (Hall, 1999)
Better computational complexity techniques Markov blanket filter { MBF)
than wrapper methods [gnores interaction (Koller and Sahami, 1996)
with the classifier Fast correlation-based
feature selection ( FCBF)
(Yu and Liu, 2004)
(Saeys et al 2007)
Université

de Liége |
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Feature selection methods

Model search Advantages Disadvantages Examples
Wrapper Deterministic
Simple Risk of over fitting Sequential forward selection
Interacts with the classifier More prone than randomized (SFS) (Kittler, 1978)
Models feature dependencies algorithms to getting stuck in a Sequential backward elimination
Less computationally local optimum (greedy search) (SBE) (Kittler, 1978)
intensive than randomized methods Classifier dependent selection Plus g take-away r
(Ferri er al., 1994)
FS space__ Beam search (Siedelecky

>

Randomized

and Sklansky, 1988)

Less prone to local optima
Interacts with the classifier
Models feature dependencies

Computationally intensive
Classifier dependent selection
Higher risk of overfitting
than determimistic algorithms

Simulated annealing

Randomized hill climbing
(Skalak, 1994)

Genetic algorithms
(Holland, 1975)

Estimation of distribution
algorithms (Inza er afl., 2000)

(Saeys et al 2007)
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Feature selection methods

Model search

Advantages

Disadvantages

Examples

Embedded

FE: U ypotheels space

~

d=xp)

Interacts with the classifier
Better computational

complexity than wrapper methods
Models feature dependencies

Classifier dependent selection

Decision trees

Weighted naive Bayes
(Duda er al., 2001)

Feature selection using
the weight vector of S¥YM
(Guvon er al., 2002;
Weston er al., 2003)

(Saeys et al 2007)

e In contrast: When screening and testing involve two separate steps,

and these steps are not independent, then proper accounting should

be made for this dependence, in order to avoid overly optimistic test

results
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Highlight 1: entropy-based filtering

Raw entropy values

e Entropy is basically a defined a measure of randomness or disorder
within a system.

e Let us assume an attribute, A. We have observed its probability
distribution, pa(a).

e Shannon’s entropy measured in bits is a measure of predictability of
an attribute and is defined as:

HA) = — > p(a) log; p(a)

a€eA

Université
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Raw entropy values: interpretation

e We can understand H(A) as the amount of uncertainty about A, as
estimated from its probability distribution

e The higher the entropy H(A), the less reliable are our predictions
about A.

e The lower the entropy values H(A) are, the higher the likelihood that
the “system” is in a “more stable state”.

8
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Low Entropy High Entropy

..the values (locations
of soup) sampled
entirely from within

the soup bowl
Copyright © 2001, 2003, Andrew W. Moore Infermation Gain: Slide 10

..the values (locations of
soup) unpredictable...
almost uniformly sampled
throughout our dining room
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Conditional entropy

e The conditional entropy of two events A and B, taking on vales a and
b respectively, is defined as

H(A|B) & — Z n(a, b) log, p(a|b)
a €A,
b €B

e This quantity should be understood as the amount of randomness in
the random variable A given that you know the value of B

8
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Conditional entropy: interpretation

HiA Bl

HiAB) ILA:B) H(BA)

The surface area of a section
corresponds to the labeled
guantity

i 1
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H(A) = entropy of A

I(A;B)

= mutual information common to
A and B

= the amount of information
provided by A about B

(= non-negative!)

(Jakulin 2003)
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Mutual information

e It can be shown that mutual information of two random variables A
and B satisfies

pla,b)
ala)pp(b)

I(A;B)= ) pla,b) log,

acAbeB
(Shannon 1948)

e Mutual information can be expressed as a Kullback-Leibler
divergence, of the product p4(a)pp(b) of the marginal distributions of
the two random variables A and B, from the random variables' joint
distribution

e /(A;B) can also be understood as the expectation of the Kullback-
Leibler divergence of the univariate distribution ps(a) of A from the
conditional distribution p,,s(a/b) of A given B: the more different the
distributions pa;s(a/b) and pa(a), the greater the information gain.

8
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Mutual information: interpretation

e Intuitively, mutual information measures the information that A and
B share: it measures how much knowing one of these variables
reduces our uncertainty about the other.

- For example, if A and B are independent, then knowing A will not
give any information about B and vice versa, so their mutual
information is zero.

- At the other extreme, if A and B are identical, then all information
conveyed by A is shared with B: knowing A determines the value
of B and vice versa. As a result, in this case, the mutual
information is the same as the uncertainty contained in A or B
alone

ﬂiz';nr
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Mutual information and r*

e Mutual information /(A ;B) as a function of r* (as a measure of LD

between markers), for a subset of the Spanish Bladder Cancer data

Université
de Liége
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Mutual information and machine learning

e Suppose there is a message Y, that was sent through a
communications channel, and we received the value X.

e \We would like to decode the received value X, and recover the
correct Y, hence perform a decoding operation Y = g(X)

e In machine learning terms this translates to: Y is the original
(unknown) class label distribution, X is the particular set of features
chosen to represent the problem, and g is our predictor.

e The set of features chosen may or may not be sufficient to perfectly
recover or predict Y:

HY)-I(X:Y)—1
log(]Y])

< plo(X)) < SH(Y|X)

Fano 1961 Hellman & Raviv 1970)

ﬂiz';nr
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Multivariate mutual information

e The multivariate form of Shannon’s mutual information /(X;Y) is often
referred to as Interaction Information (McGill 1954), and accounts for
dependencies among multiple variables (i.e. more than 2)

e To derive its expression, we first define the conditional mutual
information between two variables X; and X,, after the value of Yis
revealed

P{T1X2 y)
I(Xy; XolY) = Zp(y) Z p(z125|y) log ( |
yey r1€EX 1 19€ X5 p(ml|y)p(x2‘y>
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Multivariate mutual information

e For 3 random variables, the mutual information is
[( X713 X0y X3) = I(Xy; Xo) — 1( X Xo| XG),

the difference between the simple mutual information and the
conditional mutual information

e For higher dimensions,
interaction information is
defined recursively

Université o
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Multivariate mutual information

e McGill’s interaction information is actually

—1(X1; X9, X3) = I(X; Xo| X3) — I(X; Xo)

e This coincides with a notion of bivariate synergy, comparing the joint
contribution of X; and X, to X5 with the additive contributions of each
of them separately

e Bivariate synergy is defined as

Syn( Xy, Xo; X3) = I( X1, Xo; X3) — [I(X1; X3) + (X5, X3)]

e |t can be shown, with this definition, that indeed

Syn( X1, Xo; X3) = —I(X1; Xo; X3)
(Anastassiou 2007)

Université o
de Liege -
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Bivariate synergy: interpretation

e This quantity represents the additional information that both genetic
factors jointly provide about the phenotype after removing the
individual information provided by each genetic factor separately.

e Hence, in general, synergy is the additional contribution provided by
the “whole” compared with the sum of the contributions of the

“parts”.
(Varadan et al 2006)

e Or stated otherwise, since
Syn( Xy, Xo; X3) = I[(Xq; X5|X3) — I(Xq; X5), the synergy of 2 of the
variables with respect to the third is the gain in the mutual
information of 2 of the variables, due to knowledge of the third.

(Anastassiou 2007)

i 1
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Bivariate synergy: interpretation

If Syn(A,B;C) > 0

Evidence for an attribute interaction that cannot be linearly
decomposed

If Syn(A,B;C) <0
The information between A and B is redundant
If Syn(A,B;C) =0

Evidence of conditional independence or a mixture of synergy and
redundancy

Université
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Attribute selection based on information gain: 2" order effects

e Based on the definition of “synergy” and its equivalent expressions,
we can now derive a rule for feature selection:

- Compute the entropy-based measure Syn(SNP1,SNP2;C), the
synergy of SNP1 and SNP2 with respect to a class variable C, for
each pair-wise combination of attributes SNP1 and SNP2

- Pairs of attributes are sorted and those with the highest
Syn(SNP1,SNP2;C) are selected for further epistasis analysis

ﬂiz';nr
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Highlight 2: Multivariate filtering
Attribute selection based on Relief (Kira and Rendell 1992)

e For each instance, the closest instance of the same class (nearest hit)
and the closest instance of a different class (nearest miss) are
selected, through a type of nearest neighbor algorithm.

e The weight or score 5(i) of the i-th variable is computed as the
average, over all instances, of magnitude of the difference between
the distance to the nearest hit and the distance to the nearest miss,
in projection on the i-th variable.
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Attribute selection based on ReliefF

e ReliefF is an extension of the Relief algorithm and is more robust
than the original because it selects a set of nearby hits and a set of
nearby misses for every target sample and averages their distances
(Kononenko 1994)

e This minimizes the effects of spurious samples.

e ReliefF also extends Relief to multi-class problems by defining a
different set of “miss” samples for every category.

ﬂiz';nr
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Attribute selection based on tuned ReliefF

e The advantage of the Relief and ReliefF algorithms to capture
attribute interactions is also a disadvantage because the presence of
many noisy attributes can reduce the signal the algorithm is trying to
capture.

e The “tuned” ReliefF algorithm (TuRF) systematically removes
attributes that have low quality estimates so that the ReliefF weights

of the remaining attributes can be re-estimated.
(Moore and White 2008)

e Gear up to SURF ... (Spatially Uniform ReliefF) for computationally
efficient filtering of gene-gene interactions (Greene et al 2009)

ﬂiz';nr
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Strategy 3: Data mining as embedding technique

Random Forests (RF) (Breiman 2001)

The random forests algorithm (for both classification and regression) is

as follows:

e Draw ny.. bootstrap samples from the original data.

e For each of the bootstrap samples, grow an unpruned classification
or regression tree, with the following specifications:

- at each node, rather than choosing the best split among all
predictors, randomly sample m,,, of the predictors and choose the
best split from among those variables. (Bagging can be thought of
as the special case of random forests obtained when my,, = p, the
number of predictors)

- Predict new data by aggregating the predictions of the n;.. trees
(i.e., majority votes for classification, average for regression).
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Random Forests (RF)

e An estimate of the error rate can be obtained, based on the training
data, by the following:

- At each bootstrap iteration, predict the data not in the bootstrap
sample (what Breiman calls “out-of-bag”, or OOB, data) using the
tree grown with the bootstrap sample.

- Aggregate the OOB predictions. (On the average, each data point
would be out-of-bag around 36% of the times, so aggregate these
predictions.)

- Calculate the error rate, and call it the OOB estimate of error
rate.

(Breiman 2001)
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A schematic overview of the RF method

M variables M variables m variables
Entire Bootstrap
dataset sample
Out-of-bag
individuals
Step-] —— Step-] c— Step-3
L Hh-p..l. J
| FREgg |
'rfﬂ'.i‘.g | i f.l'l‘ln;:'\j
) i
N P
[Cnm] |Cnntrull '\:”51}' I{”{ff‘
[Case| | Control | [Case] [ Control|

(Motsinger-Reif et al 2008)
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Some advantages of the Random Forest method

e |t estimates the relative importance of variables in determining
classification, thus providing a metric for feature selection.

- Beware: different RF importance measures have different
stability properties and performance in the presence of highly
correlated features ... (Calle and Urrea 2010; Nicodemus et al
2010)

e RF is fairly robust in the presence of heterogeneity and relatively high
amounts of missing data (Lunetta et al., 2004).

e As the number of input variables increases, learning is fast and
computation time is modest even for very large data sets (Robnik-
Sikonja 2004).
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Some advantages of the Random Forest method

e New implementations of RF allow rapid analysis of highly dimensional data
such as those generated for GWA studies (Schwarz et al 2010): Random
Jungle (http://www.randomjungle.org/rjungle/)



http://www.randomjungle.org/rjungle/
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Modeling / Testing
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What do we want to model/test?

e Example of penetrance table for two loci interacting epistatically in a
general sense (fully penetrant: either O or 1)

Genotype 'bb bB BB

aa 0 0 0
aA 0 1 1
AA 0 1 1

(Cordell 2002)

e Enumeration of two-locus models:

- Although there are 2°=512 possible models, because of
symmetries in the data, only 50 of these are unique.
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K Van Steen

Enumeration of two-locus models

(Li and Reich 2000)

M11

M2 M3 (RD) M5 M7(1L:R) M10

M1(RR)

e Each model represents a group

of equivalent models under

permutations. The

representative model is the one

with the smallest model

number.
e Two single-locus models (‘IL") -

¢

the recessive (R) and the
interference (1) model.
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Different degrees of epistasis

Penetrance = P(Disease | Genotype)

AA| O [ 1|0
Aal 1 10| 1

Gene A

aa| 0| 1]0
Penetrance = P(Disease | Genotype) BE Bb bb

aal o 0 0 Gene B

§ “strictly non-linear interaction
€Al 0|0 |1 between two or more genetic factors”
v

al0|1]1

BB Bb bb
Gene B

“interaction between two or
more genetic factors”

Quantitative Description
(departure from independence)

“Loose” L Lo “Strict”
Qualitative Description

(slide: Motsinger)
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Incomplete penetrances

e Odds of disease for 2 loci under epistatic scenarios

Multiplicative within
and between loci

a

aa

Aa

AA

Université
de Liege

Two-locus interaction
multiplicative effects

Odds

bb Bb BB bb Bb B8

2 x(1+6,) x(1 -M2)2 aa P z b
2(1+04) a(1+0)(140,)  2(140,)(140,)2 Aa | =2 2(1+0) a(1+0)2
2(1+0,)° a(140,2(140,)  a(1+0,)2(140,)° AA | = 2(1+0)2 (1404
3.0 1

25+

2.0

154

1.0

0.51 BB

%
0.04 Bb $0
aa bb &
Aa AA ~
Lo Lo
Ccus 1 Cus 1

Two-locus Interaction

threshold effects
Bb BB
aa 2 x
Aa 2(140) 2(144))
AA a(1+0)) 2(1+8)
3-0 1
2.5 4
2.04

1.5
1.0 ]

0.5

0.0 4

BB‘\/

Bb sa
($)
aa bb o
Aa AA ~

(Marchini et al. 2005)
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Power to Detect Association for 1,500 Individuals where Both Loci Are
Responsible for 5% of the Trait Variance

Two locus model
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A growing toolbox

e The number of identified epistasis effects in humans, showing
susceptibility to common complex human diseases, follows a steady
growth curve (Emily et al 2009, Wu et al 2010), due to the growing number of
toolbox methods and approaches.

Epistatic Interactions Identified by Year

80

50

40

20+

MNumber of Interaction Models Found

T T T T T T T T T T
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

Year

(Motsinger et al. 2007)
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Selection an epistasis detection method

(Kilpatrick 2009)

Computational methods
for detecting statistical
epistasis

FasiChi HFCC SetAssociation
MDR All Pairs
(Simultansous)
Stochasfic
)™

ITF

Ant Colony Random
Optimization

--------------
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Briefings in Bioinformatics Advance Access published March 26, 2011
BRIEFINGS IN BIOINFORMATICS. page | of 19 doi:l01093/bib/bbrii2

Travelling the world of gene-gene
interactions

Kristel Van Steen

Submitted: 22nd December 2010; Received (in revised form): 13th February 2011

Abstract

Over the last few years, main effect genetic association analysis has proven to be a successful tool to unravel genetic
risk components to a variety of complex diseases. In the quest for disease susceptibility factors and the search for
the ‘missing heritability}, supplementary and complementary efforts have been undertaken. These include the inclu-
sion of several genetic inheritance assumptions in model development, the consideration of different sources of
information, and the acknowledgement of disease underlying pathways of networks. The search for epistasis or
gene—gene interaction effects on traits of interest is marked by an exponential growth, not only in terms of meth-
odological development, but also in terms of practical applications, translation of statistical epistasis to biological
epistasis and integration of omics information sources. The current popularity of the field, as well as its attraction
to interdisciplinary teams, each making valuable contributions with sometimes rather unique viewpoints, renders
it impossible to give an exhaustive review of to-date available approaches for epistasis screening. The purpose of
this work is to give a perspective view on a selection of currently active analysis strategies and concerns in the
context of epistasis detection, and to provide an eye to the future of gene —gene interaction analysis.

Keywords: gene—gene interaction; variable selection; controlling false positives; translational medicine
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Are all methods equal?

e Several criteria have been used to make a classification:

the strategy is exploratory in nature or not,

modeling is the main aim, or rather testing,

the epistatic effect is tested indirectly or directly,

the approach is parametric or non-parametric,

the strategy uses exhaustive search algorithms or takes a reduced
set of input-data, that may be derived from

= prior expert knowledge or

" some filtering approach

“These criteria show the diversity of methods and approaches and complicates
making honest comparisons”.

Université
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Type

Example

MNote

Exhaustive epistasis ana-
lysis methods

Non-exhaustive epistasis
analysis methods
Greedy viewpoint

Stochastic viewpoint

Multifactor dimensionality reduction (MDR, [59])

Model-based multifactor dimensionality reduction

(MB-MDR, [48])

(Penalized) Logistic regression [91-93], multivariate
adaptive regression splines [94], adaptive group lasso
[98], Mnets [95], partial least squares [96], BOolean
operation-based screening and testing [97], inter-
action testing framework (ITF) [47] compositional
epistasis [86—88], reconstructability analysis
(RA, [105])

EPIBLASTER [106]

Focused regression-based interaction screening
approaches (thresholding combinations for
interaction testing: focused interaction testing
framework (FITF, [47])

Variable selection (filtering) followed-up by an
exhaustive epistasis screening method

SNPHarvester [52]

Logic regression (LR) [35, 65, 107], MCMC logic
regression [64], logic forest [68], random
forests+ MDR [50], random jungle (R}, [51])

Bayesian epistasis association mapping (BEAM, [53])

All possible interactions of the input variables

When necessary, combined with variable reduction

step, which may (cf. variable selection) or may not

involve the phenotype of interest

Non-parametric data mining method that aggregates
multi-locus signals into ‘risk’ groups

Semi-parametric data mining method that aggregates
multilocus signals and orders them according to
‘severity’

Parametric approach with regression-based foundation
or overlap

Contrasting measure of LD between markers

Partial search among all possible interactions of the
input variables

Pre-select candidate interactions based on evidence
for lower order effects

Iteratively pre-select a subgroup of variables for
full-blown epistasis analysis

Interaction detection method merging ideas from
k-means clustering and Markov chain Monte Carlo

Decision tree-based methods

Bayesian partitioning with posterior probabilities for
epistatic markers
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One popular method singled out

e Vermeulen et al (2007) re-confirmed that regression approaches
suffer from inflated findings of false positives, and diminished power
caused by the presence of sparse data and multiple testing problemes,
even in small simulated data sets only including 10 SNPS.

e North et al (2005) showed that in some instances the inclusion of
interaction parameters - within a regression framework - is
advantageous but that there is no direct correspondence between
the interactive effects in the logistic regression models and the
underlying penetrance based models displaying some kind of
epistasis effect

ﬂiz';nr
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One popular method singled out
e Interactions are commonly assessed by regressing on the product
between both ‘exposures’ (genes / environment)

EY |G, Gy, X) = By + 51G1 + BoGy + Bx X + BG1Go

with X a possibly high-dimensional collection of confounders.

e There are at least 2 concerns about this approach:
- Model misspecification = we need a robust method
- Capturing statistical versus mechanistic interaction = guard against

high-dimensional (genetic or environmental) confounding)

(adapted from slide: S Vansteelandt)

8
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... Targeting mechanistic interactions

e Tests for sufficient cause interactions to identify mechanistic
interactions aim to signal the presence of individuals for whom the
outcome (e.g., disease) would occur if both exposures were

“present”, but not if only one of the two were present.
(Rothman 1976, VanderWeele and Robins 2007)

o For EY|G,Gy, X) = By + 51G1 + (oGy + Bx X + GG
a sufficient cause interaction is present if
5 > [o.
e When both exposures have monotonic effects on the outcome, this

can be strengthened to
8> 0.

(X suffices to control for confounding of the estimation of (&1, (=, effects)

8
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...Targeting mechanistic interactions (adapted from slide: S Vansteelandt)

e |ssues:
- Tests for sufficient cause interactions involve testing on the risk
difference scale
- Reality may show high-dimensional confounding
- Estimators and tests for interactions are needed that are robust
to model misspecification
e Possible solution:
- Semi-parametric interaction models that attempt to estimate
statistical interactions without modeling the main effects
e Comment: already hard in the case of two SNPs, using a theory of
causality that is not widely accessible.

ﬂiz';nr
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Towards alternative approaches

e What do we know?

- Parametric model (mis)specification is of major concern,
especially in the presence of high-dimensional confounders

- Small n big p problems may give rise to curse of dimensionality
problems (Beliman 1961); sparse cells issues

- A lot more knowledge needs to be discovered, naturally giving
rise to “data mining” type of strategies
e To keep in mind:
- Data snooping: statistical bias due to inappr. use of data mining!
- Biological knowledge integration

Université
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The curse of dimensionality in GWAI studies

e The curse of dimensionality refers to the fact that the convergence of
any parametric model estimator to the true value of a smooth
function defined on a space of high dimension is very slow (Beliman and
Kalaba 1959).

e This is already a problem for main effects GWAS, when trying to
assess those SNPs that are jointly most predictive for the disease or
trait of interest, but is compounded when epistasis screenings are
envisaged

“Parametric model (mis)specification is of major concern, especially in the
presence of high-dimensional confounders”
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Towards alternative approaches

e What do we know?
- Parametric model (mis)specification is of major concern,

especially in the presence of high-dimensional confounders

- Small n big p problems may give rise to curse of dimensionality
problems (Beliman 1961); sparse cells issues

- A lot more knowledge needs to be discovered, naturally giving
rise to “data mining” type of strategies
e To keep in mind:
- Data snooping: statistical bias due to inappr. use of data mining!
- Biological knowledge integration
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Missing data

e For 4 SNPs, there are 81 possible combinations with even more

parameters to potentially model and more possible empty cells ...
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(slide: C Amos)

“A revision of LD based imputation strategies for GWAIs is needed”
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A note aside
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Missing data

Making most of available genotype information

e The idea is that data on a modest set of genetic variants measured in
a number of related individuals can provide useful information about
other genetic variants in those individuals

e This forms the theoretical underpinning of both genetic linkage
mapping in pedigrees and haplotype mapping in founder
populations.

e Genetic linkage implies that family members who share a region IBD
will be more similar to each other than will family members with the
same degree of relatedness who do not share the region IBD.

(Lander and Schork 1994 ; de la Chapelle and Wright 1998)

8
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Making most of available genotype information

e In traditional genetic linkage and founder haplotype mapping studies:
- Long stretches of shared chromosome inherited from a relatively
recent common ancestor
e In GWAs with (apparently) unrelated individuals:
- Relatively short stretches of shared chromosomes
e However, genotype imputation can use these short stretches to
estimate with great precision the effects of many variants that are
not directly genotyped

(Li et al 2009)

ﬂiz';nr
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Causes for missing data

e Restricting to genotype data, missingness may be due to several
reasons:
- Quality of the genotyping
- Limitations of current genotyping platforms and calling-
algorithms:
" Missing genotypes may not randomly distributed throughout
the homozygous and heterozygous groups
- Different coverage by different genotyping efforts
= Relevant in the context of pooled data or data to be used for
meta-analysis purposes
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Causes for missing data

® Missingness may —in theory - be introduced via several mechanismes:
(Rubin taxonomy — Rubin 1976)

- Missing completely at random
= MCAR: missing data values are a simple random sample of all
data values
- Missing at random
* MAR: the probability that an observation is missing depends
on observed values but not on missing ones
- Not missing at random
= NMAR: the missingness depends on data that is not observed
= Relies on unverifiable assumptions
" PLINK is able to “test” whether or not genotypes are missing
at random wrt the true (unobserved) genotype, based on the
observed genotypes of nearby SNPs

Université o
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Severity of having missing genotypes

e For single-SNP analyses, if a few genotypes are missing there is not
much problem.

e For multipoint SNP analyses, missing data can be more problematic
because many individuals might have one or more missing
genotypes.

“Any bias in the missing data (e.g., different distributions in cases and controls or
according to genotype groups) could create spurious results”

Université
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Solutions for dealing with missing genotypes
Imputation

e One convenient solution is data imputation
- Data imputation involves replacing missing genotypes with
predicted values that are based on the observed genotypes at
neighboring SNPs (tightly linked markers).

e |In the “early days” of addressing this problem, several studies on
missing genotype data had been published, but many of these were
family studies

e Authors such as Kistner & Weinberg (2004) used multiple imputation
for missing genotype data but, since their studies consisted (partly) of
related individuals, they adjusted the imputation method to avoid
possible inconsistencies of imputed genotypes among family
members. (Souverein et al 2006)

Université o
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Imputation

e |n contrast, replacing missing genotypes with observed means or the
most probable genotypes does not use linkage disequilibrium (LD)
information from nearby markers, decreasing statistical efficiency
and possibly causing bias.

e Estimation of missing genotypes can be a by-product of haplotype
reconstruction, with either a maximum likelihood method
implemented by the expectation maximization or Bayesian methods

- While the maximum likelihood can lead to computer memory
limitations, the Bayesian methods can take a longer time to
converge. In both approaches, missing genotypes and missing
phase are treated equivalently and inferred simultaneously.

ﬂiz';nr
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Imputation

e Estimation of missing genotypes can also be achieved by inferring
missing genotypes by iteratively estimating missing values and
updating models that formulate the relationship between a SNP and
its flanking markers

e Alternatively, parametric regression models or non-parametric (e.g.,
based on clustering, tree-building) methods are adopted, in order to
select the relevant SNPs for imputation purposes

e Caution:

- Population stratification
- MNAR
- Weak or strong LD between markers
- Unrelated vs related individuals
(Yu and Schaid 2007)
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Towards alternative approaches

e What do we know?
- Parametric model (mis)specification is of major concern,
especially in the presence of high-dimensional confounders
- Small n big p problems may give rise to curse of dimensionality
problems (Beliman 1961); sparse cells issues
- A lot more knowledge needs to be discovered, naturally giving
rise to “data mining” type of strategies

e To keep in mind:

- Data snooping: statistical bias due to inappr. use of data mining

- Biological knowledge integration
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The multiple testing problem ~ significance assessment

e The genome is large and includes many polymorphic variants and
many possible disease models, requiring a large number of tests to
be performed.

II)

e This poses a “statistical” problem: a large number of genetic markers
will be highlighted as significant signals or contributing factors,

whereas in reality they are not (i.e. false positives).

~500,000 SNPs span 80% of common
variation (HapMap)

“The interpretation of GWAIs is
hampered by undetected false

positives”

Université
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Significance assessment
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What is the general setting?

Introduction

e The genome is large and includes many polymorphic variants and
many possible disease models, requiring a large number of tests to
be performed.

e Any given variant (or set of variants) is highly unlikely, a priori, to be
causally associated with any given phenotype under an assumed
model, and strong evidence is required to overcome scepticism about

an association.
(Balding 2006)
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Introduction

e Even if a researcher only tests one SNP for one phenotype, if many
other researchers do the same and the nominally significant
associations are reported, there will be a problem of false positives.

e There is a need for statistical confidence measures associated with
each discovery

e These may be stated in terms of:

- P-values
- False discovery rates
- Q-values

8
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Sources of multiple testing are multiple ...

Source

Example

Multiple outcormas

MMultiple pradictors

Subgroup analyses

MMultiple dafinitions for tha axpoaurss and outcomeas

Multiple tirme points for the outcoma (repadatad
MSCSUrSs)

MMultiple looks ot tha dota durning saquential interim
rrcnitoning

A cohort study looking at the incidancs of raast cancar, colon cancsar,
and lung cancsr

An chsareational shudy with 40 dietary predictors or a trial with 4
randormization groups

A randormized il that tasts the afficacy of an intervention in 20
sdbgroups based on prognostic factors

An obsarvational study whara the data anabest tests multiple differant
dafinitiors for “rmodarcte dinkirg™ (eg. & drinks per weslk, 1 drink par
oy, 1-2 drinks par day, afc)

A stuclhy whara awalkirg tast iz administered at 1 month, 3 months, &
rmcriths, and 1 vaar

A 2ovaar randomizad tial where the afficacy of tha fraatmant &
avaluated by o Daota Safety and Maoniborrg Board ot & rmonths, 1 year,
and 18 rmonths
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The multiple testing problem further translated to GWAS

e Simultaneously test m null hypotheses, one for each SNP j
Hoi: no association between SNP j and the trait
e Every statistical test comes with an inherent false positive, or type |
error rate—which is equal to the threshold set for statistical
significance, generally 0.05.

® However, this is just the error rate for one test. When more than one
test is run, the overall type | error rate is much greater than 5%.

ﬂiz';nr
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The multiple testing problem translated to GWAS

e Suppose 100 statistical tests are run when (1) there are no real
effects and (2) these tests are independent, then the probability that
no false positives occur in 100 tests is 0.95"°° = 0.006. So the
probability that at least one false positive occurs is 1-0.006=0.994 or
99.4%

e There is not a single measure to quantify false positives (Hochberg et
al 1987).

e Several multiple testing corrections have been developed and
curtailed to a genome-wide association context, when deemed
necessary.

ﬂiz';nr
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Measuring false-positives

® In general, false-positive controlling measures either control

- the family-wise error rate (FWER), or the overall type | error rate,

- the generalized family-wise error rate, gFWER(k), the tail
probability that the number of Type | errors exceeds a user-
supplied integer k,

- the tail probability, TPPFP(q), that the proportion of Type | errors
among the rejected hypotheses exceeds a user-supplied value
0<g<1, and

- the false discovery rate (FDR).
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Measuring false-positives

e For discussions about the utility of the aforementioned and other
multiple testing procedures in genomics applications, we refer to

Manly et al. (2004), Pollard et al (2004), Dudbridge et al (2006),
Dudoit and van der Laan (2008), amongst others.

oh;
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Measuring false-positives

# true null hypotheses
(non-diff. genes)

# false null hypotheses
(diff. genes)

e FWER = p(V = 1) = Family-wise error rate

# non—rejected  # rejected

hypotheses hypotheses
U Vv
Type | error
T AST
Type Il error
m— R R

e FDR = E(V/R) = False discovery rate

ii:

s <2
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Family-wise error rate (FWER)

FWER = p(V > 1)

e The frequentist paradigm of controlling the overall type-1 error rate
sets a significance level a (often 5%), and states that all the tests that
the investigator plans to conduct should together generate no more
than probability a of a false positive.

e In complex study designs, which involve, for example, multiple stages
and interim analyses, this can be difficult to implement

e Strong control of FWER at level a: FWER is upper-bounded by a
regardless of the number of false null hypotheses (m;>0)

e Weak control of FWER at level a: FWER is upper-bounded by a
whenever all tested null hypotheses are true (my=m)

ﬂiz';nr
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The Bonferroni correction

e The most widely known multiple testing correction is the Bonferroni
correction.

e If n SNPs are tested and the tests are approximately independent, the
appropriate per-SNP significance level a’ should satisfy

a=1-(1-a)n,

which leads to the Bonferroni correction a'= a / n.

e For example, to achieve a = 5% over 1 million independent tests
means that we must set o’ =5 x 10™°.

e However, the effective number of independent tests in a genome-
wide analysis depends on many factors, including sample size and the
test that is carried out [see: Take-home messages — Part 7].

8
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False discovary rate (FDR)

e The FDR refers to the proportion of false positive test results among
all positives:
- FDR = E(V/R) = What if no null hypotheses are rejected (R=0)?
- FDR =E[V/R | R>0] . prob(R>0) (Benjamini and Hochberg 1995)
- pFDR = E[V/R | R>0] (Storey 2001)

e Hence, FDR measures come in different shapes and flavor.

- Under the null hypothesis of no association, p-values should be
uniformly distributed between 0 and 1;

- FDR methods typically consider the actual distribution as a
mixture of outcomes under the null (uniform distribution of p-
values) and alternative (P-value distribution skewed towards
zero) hypotheses.

“ ﬂiz';nr
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FDR

e Rather than setting a fixed pFDR rate to control, Storey and
colleagues suggest giving a value to each test that indicates what
pFDR would result from declaring that test significant.

e The g-value associated with an individual test is defined as the
minimum pFDR achieved when declaring all tests significant at the
level of the test’s pvalue.

e A g-value can be estimated for each test in a genome-wide
experiment and follow-up tests selected from those with the lowest
g-values.

ﬂiz';nr
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Do these classical methods hold up in GWA settings?

Family-wise error rate (FWER) control using Bonferroni thresholds

e Bonferroni Threshold in the context of GWAS: < 10”/ , < 10°®
e In the presence of too many tests, the Bonferroni threshold will be
extremely low

e Moreover,
- Bonferroni adjustments are conservative when statistical tests

are not independent
- Bonferroni adjustments control the error rate associated with the

omnibus null hypothesis
- The interpretation of a finding depends on how many statistical

tests were performed
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Do these classical methods hold up in GWA settings?

e FDR and variations thereof
- Start to break down in GWAS settings with complex LD
dependencies between markers (and therefore complex
dependencies between test statistics)
- The power over Bonferroni is minimal, especially when multiple
signals are assumed to be present in the data and the aim is to

identify most (if not all) of them in a single analysis run (e.g., Van
Steen et al 2005)
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Other popular ways to control false positives in GWA settings

FDR in Bayesian terms

e Suppose m identical hypothesis tests are performed with
independent statistics T,, ..., T,,, and rejection area C.

e Suppose that a null hypothesis is true with a-priori probability
7o = Prob(H = 0).

e Then
70.Prob(T € C|H = 0)
FDR(C) = — Prob(H = 0|T € C).
pFDR(C) Prob(T € C) rob(H =0T € )

using Bayes rule ....

(Storey 2001)

Université
de Liege




K Van Steen Seoul — February 2013

Bayesian methods

e The usual frequentist approach to multiple testing has a serious
drawback in that researchers might be discouraged from carrying out
additional analyses beyond single-SNP tests (read: epistasis
screening)

e |t is a matter of common sense that expensive and hard-won data
should be investigated exhaustively for possible patterns of
association.

e Under the Bayesian approach, there is no penalty for analysing data
exhaustively because the prior probability of an association should
not be affected by what tests the investigator chooses to carry out.

ﬂiz';nr
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The false-positive report probability (FPFP)

e A further difficulty with FDR is that it says little about the individual
tests. The most significant tests are most likely to be the true
positives, but FDR and g-values ignore this in favour of averaging the
error rate across all significant tests.

e The local FDR is computed as follows:

Wofo(T)
mofo(T) + (1 — 7o) f1(T)

where 7 is the prior probability that the null hypothesis is true, T is
the test statistic, and f, and f; are the probability densities of T under
the null hypothesis and alternative hypothesis, respectively

(Efron et al 2001, 2002)
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The false-positive report probability (FPFP) (Wacholder et al 2004)

e The FPFP is the posterior probability that a null hypothesis is true,
given a statistic at least as extreme as that observed
e It is defined as

WOFO(T)
WoFo(T) + (1 — WQ)Fl(T)

where now F,; and F; are the cumulative distributions.

e For known myand F; and large number of multiple tests, it can be
shown that the FPRP is the same as the g-value, the main difference
being one of context.

8
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Do these methods hold up in GWA settings?

Bayesian methods

e Bayesian methods are believed to play an increasing role in genetic
association analyses ... provided these methods can be made more
accessible to a wider audience
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Other popular ways to control false positives in GWA settings

Permutation-based control

e In samples of unrelated individuals, one simply swaps labels
(assuming that individuals are interchangeable under the null) to
provide a new dataset sampled under the null hypothesis.

- Note that only the phenotype-genotype relationship is destroyed
by permutation: the patterns of LD between SNPs will remain the
same under the observed and permuted samples.
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Permutation-based control

e For family data, it might be better (or in the case of affected-only
designs such as the TDT, necessary) to perform gene-dropping
permutation instead. In its most simple form this just involves
flipping which allele is transmitted from parent to offspring with
50:50 probability.

- This approach can extend to general pedigrees also, dropping
genes from founders down the generations.

i 1
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Permutation- based control

e Two sets of empirical significance values can then be calculated:
- Pointwise estimates of an individual SNP’s significance
- A value that controls for the fact that thousands of other SNPs
were tested, while comparing each observed test statistic against
the maximum of all permuted statistics (i.e. over all SNPs) for
each single replicate.
* The p-value now controls the FWER, as the p-value reflects
the chance of seeing a test statistic this large, given you've
performed as many tests as you have.

ﬂiz';nr
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Permutation- based control

e The accuracy of the permutation test can be improved by noting that
the minimum p-value, sum statistic and truncated product can all be
regarded as the extreme value of a large number of observations
(Dudbridge et al 2004).

e Therefore, they should follow the extreme value distribution (Coles
2001) and by fitting the parameters of the distribution to the values
observed in permutation replicates, more accurate significance levels
are obtained.

e Equivalently, fewer replicates are needed to reach a given accuracy.

ﬂiz';nr
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Do these classical methods hold up in GWA settings?

Permutation-based control

e The permutation method is conceptually simple but can be
computationally demanding, particularly as it is specific to a
particular data set and the whole procedure has to be repeated if
other data are considered

e Particularly handy for rare genotypes, small studies, non-normal
phenotypes, and tightly linked markers

- In case-control data this is relatively straightforward
- In family data this is not at all an easy task ... (see before)
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Take-home messages

e It is important to verify the validity of the assumptions that underlie
each corrective method for multiple testing, in order to select the
most optimal corrective method for the data at hand.

e Several methods have been developed to curtail “classica
to GWAS settings

e Methods that accommodate correlated hypothesis tests (e.g., due to
LD structure between genetic variants) include:

- applying a Bonferroni correction using effective sample size
derived from principal components (Nyholt et al 2004, Moskvina
et al 2008),

- exploiting haplotype blocking algorithms (Nicodemus et al 2005),

III

methods

i 1
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Take-home messages (cnt-ed)

- adopting a framework for hidden Markov Model-dependent
hypothesis testing (Sun and Cai 2009, Wei et al 2009).

e The permutation test is widely considered the gold standard for
accurate multiple testing correction, but it is often computationally
impractical for these large datasets

e Several variations of permutation-based methods have been worked
out, including those based on:

- deriving an early-evidence stopping rule (Doerge and Churchill
1996)

- approximating the tail distribution by generalized extreme value
distributions (Knijnenburg et al 2009 = in the context of main
effects GWAS, Pattin et al 2009 = in the context of epistasis)

ﬂiz';nr
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Take-home messages (cnt-ed)

e The field is not yet saturated with time-efficient false-positive
controlling methods.

e New promising tools, even in the presence of millions of correlated
markers, are emerging as we speak, claiming to be as accurate as
permutation-based testing.

- One of these methods is SLIDE (a Sliding-window Monte-Carlo
approach for Locally Inter-correlated markers with asymptotic
Distribution Errors corrected ; Han et al 2009)

- Another one is PACT (P values Adjusted for Correlated Tests)
(Conneely and Boehnke 2007)

ﬂiz';nr
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How to compare methods... Is this truly a basic question?

e Power

e Type | error / False positives

EpiCruncher
Bonferroni Permutations z 5
LR test Score test LR test Score test 22
Test P-value Test P-value Test P-value Test P-value § 7Z< E
statistic statistic statistic statistic » =
M=1| M=5| M=1|M=5| M=1| M=5|M=1| M=5| M=1 | M=5 | M=1 | M=5 | M=1 | M=5 | M=1 | M=5
rs17116117 rs2513574 X X X X X X X X X X X X X X X X X X X
rs17116117 rs2519200 X X X X X X X X X X X X X X X X X X X
rs17116117 rs4938056 X X X X X X X X X X X X X X X X X X
rs17116117 rs1713671 X X X X X X X X X X X X X X X X X
rs13126272 rs11936062 X X X X X X X X X X X X X X X X X
rs17116117 | rs7126080 [NBGMN X | X | x x | x [ x| «x
rs3770132 rs1933641 X X X X
rs12339163 rs1933641 X X X X
rs12853584 | rs1217414 [N X X x | x
rs17116117 rs1169722 X
number significant 6 6 6 6 7 5 7 5 6 7 6 6 7 6 7 6 6 3 3
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Towards alternative approaches
e What do we know?
- Parametric model (mis)specification is of major concern,
especially in the presence of high-dimensional confounders
- Small n big p problems may give rise to curse of dimensionality
problems (Beliman 1961); sparse cells issues
- A lot more knowledge needs to be discovered, naturally giving
rise to “data mining” type of strategies
e To keep in mind:
- Data snooping: statistical bias due to inappr. use of data mining!

- Biological knowledge integration
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Data Integration

e The genome on its own has turned out to be a relatively poor source

of explanation for the differences between cells or between people
(Bains 2001)

e Broad definition (van Steen):
“Combining evidences from different data resources, as
well as data fusion with biological domain knowledge,
using a variety of statistical, bioinformatics and
computational tools”.

i 1
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Towards alternative approaches

e The golden question:

To what extent do methods based on
multifactor dimensionality reduction

accommodate the aforementioned issues?
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Interpretation
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A flexible framework for analysis acknowledging interpretation
capability

e The framework contains four steps to detect, characterize, and
interpret epistasis

Select interesting combinations of SNPs
Construct new attributes from those selected

Develop and evaluate a classification model using the newly
constructed attribute(s)

Interpret the final epistasis model using visual methods

(Moore et al 2005)
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Example of a visual method: the interaction dendrogram

e Hierarchical clustering is used to build a dendrogram that places
strongly interacting attributes close together at the leaves of the

tree.

N C.orov
a— O YNETgY

mmm Redundancy Ti74M
I—_E kol
A-20C

M235T
G-6A
G-152A
G-217A
ATIR
 Weak Interaction Strong Interaction
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Interaction dendrogram

e The colors range from red e On the redundancy end of the

representing a high degree of
synergy (positive information
gain), orange a lesser degree, and
gold representing the midway
point between synergy and
redundancy.

Synergy — The interaction
between two attributes provides
more information than the sum of
the individual attributes.
Redundancy — The interaction
between attributes provides
redundant information.

. FH
Université o
de Liege -

spectrum, the highest degree is
represented by the blue color
(negative information gain) with a
lesser degree represented by
green.

Synergy
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Hierarchical clustering with average linkage

e Recall, here the distance between two clusters is defined as the
average of distances between all pairs of objects, where each pair is
made up of one object from each group

Cluster B ¢ The distance matrix used by the
cluster analysis is constructed
by calculating the information
gained by constructing two
attributes (Moore et al 2006,
Jakulin and Bratko 2003, Jakulin
et al 2003)

Cluster A
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Data Integration: a solution?!

e Where in the GWAI process?

(slide: E Gusareva)
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Data Integration: a solution?!

Where?

How?

Comments

Data preparation / Quality
control

Impute using different data
resources

Filling in the gaps or
inducing LD-driven
interactions?

Variable selection

Use a priori knowledge
about networks and
genetical / biological
interactions (e.g., Biofilter)

Feature selection
(dimensionality reduction)
or loosing information?

Modeling

“Integrative” analysis

Obtaining a multi-
dimensional perspective or
combining/merging data in
a single analysis?

Interpretation (validation)

Use a posteriori knowledge
(e.g., Gene Ontology
Analysis, Biofilter — Bush et
al. 2009)

Targeting known
interactions or ruling out
possibly relevant unknown
interactions?

8
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Plug and play

e The best advice towards success is to adopt different viewpoints to
approach the biological problem (see later: example on Alzheimer)
e Plug and play ... but not carelessly!

61A5BERGE{Q Copyright 2008 by Randy Glasbergen.
www.glasbergen.com
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“If vou consider the wind-chill factor, adjust
for inflation and score on a curve,
I only weigh 98 pounds!™
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Model-Based Multifactor
Dimensionality Reduction
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Historical notes about MB-MDR

e Knowledge:
- Parametric model (mis)specification is of major concern,
especially in the presence of high-dimensional confounders
- Small n big p problems may give rise to curse of dimensionality
problems (Bellman 1961)
- A lot more knowledge needs to be discovered, naturally giving
rise to “data mining” type of strategies
e To keep in mind:
- Data snooping: statistical bias due to inappr. use of data mining!
- Biological knowledge integration
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Historical notes about MB-MDR

e Start: Multifactor Dimensionality Reduction by MD Ritchie et al (2001)

STEP 1 e STEP 2 ——- STEP 3

Factor Locus 3
::E; /AA_’ Aaz - aa
Locus 3 o I
12
=

Locus 4
B

Locus 5
Locus 6

L J
Locus N bb

6 &
leme) «— o= «—

Locus 4
m
ey
o o
=]

Locus 1 Locus 3

AL Aa aa Models Ab Aa aa
Factors Error
BE o . . 1.6 19.25 BB 3.00 0.42 1.14
© a a | 1 & 1.3 22.12 -
@ 2,4 24,33 =
g Bb 2,3 28,14 g Bb 0.75 4,00 2,66
—~ 1 2 1 0 2 0 - -
:
bb bb 1.27 0.54
1 0O o 2| 4 1
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A note aside
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Multifactor Dimensionality Reduction (MDR)

The 6 steps of MDR
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MDR Step 1

e Divide data (genotypes,
discrete environmental factors,
and affectation status) into 10
distinct subsets

Université o
de Liege -

—>

4
6 5
L STEP 6
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Locus 1 AA Aﬁ“ aa
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1,3 2212 -
2,4 24,33 a
2,3 28.14 g Bb 0.75 4,00 2,66
-
4
bb 1.27 0.54




K Van Steen

Seoul — February 2013

MDR Step 2

e Select a set of k genetic or
environmental factors (which
are suspected of epistasis
together) from the set of all
variables (N) in the training set

ii:

s <2
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MDR Step 3

e Create a contingency table for
these multi-locus genotypes,
counting the number of
affected and unaffected
individuals with each multi-
locus genotype

ii:

s <2
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MDR Step 4

e Calculate the ratio of cases to — —
controls for each multi-locus STy o e e la

’ 3 tZﬁﬂl‘;\‘-% Bo |15 X | 12 8
genotype ? 7 B N
] & = Locus N o I_H_ 7 1.3

e Label each multi-locus Uicers —

genotype as “high-risk” or “low- R s wes m R
risk”, depending on whether R D D - [ P ey ey
the case-control ratio is above a 1 oloala

certain threshold

e This is the dimensionality Reduces k-dimensional space to 1
reduction step: dimension with 2 levels

ii:

s <2
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MDR Step 5

e To evaluate the developed
model in Step 4, use labels to
classify individuals as cases or
controls, and calculate the
misclassification error

e |n fact: balanced accuracy are
preferred (arithmetic mean
between sensitivity and
specificity), which IS
mathematically equivalent to

ii:

s <2
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Repeat Steps 2to 5

e All possible combinations of k factors are evaluated sequentially for
their ability to classify affected and unaffected individuals in the
training data, and the best k-factor model is selected in terms of
minimal misclassification error

(e ] — (] — [

Factor Locus 3
Locus 1 AA A"‘24 aa
9 2 Locus 2 Be | 12 10 8 7
Locus 3 [ | 4 =
8 Locus 4 :
3 Locus 5 \*é Bb | 15 20 12 3 8 3
Locus 6 - . I . - Wl o
7 4 H
-
Locus N

bb W1 | 5, 13
& B oo [H W | wm M|
L STEP & — STEPS — STEP 4
Locus 1 Locus 3
AA Model Aa
ctors E
BB 0 . 1 1,6 19.25 BB 3.00 0.42 1.14
© 2 a |1 a 1,3 2212 -
o 2,4 24,33 @
g Bb 2.3 2814 g Bb 0.75 4,00 2,66
-3 1 2 1 0 2 0 -
bb bb 1.27 0.54
1 ojo 2|12 1
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MDR Step 6

e The independent test data from
the cross-validation are used to
estimate the prediction error
(testing accuracy) of the best k-
order model selected

e Towards final MDR:
Repeat steps 1-6

ii:

s <2
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Towards MDR Final

e The best model across all 10 training and testing sets is selected on
the basis of the criterion:
- Maximizing the average training accuracy across the 10 cross-

validation intervals, within an “interaction order k” of interest
» Order k=2: best model with highest average training accuracy
* Order k=3: best model with highest average training accuracy
- The best model for each CV interval is applied to the testing
proportion of the data and the testing accuracy is derived.
" The average testing accuracy can be used to pick the best

model among 2, 3, ... order “best” models derived before
(Ritchie et al 2001, Ritchie et al 2003, Hahn et al 2003)

ﬂiz';nr

Université o
de Liege | g



K Van Steen Seoul — February 2013

Towards MDR Final

e Several improvements:

- Use of cross validation consistency (CVC) measure, which records
the number of times MDR finds the same model as the data are
divided in different segments

= Useful when average testing accuracies for different “best”
higher order models are the same

" Average testing accuracy estimates are biased when CVC < 10
- permutation-based null distribution (no association) !!!

- Use accuracy measures that are not biased by the larger class

- Use a threshold that is driven by the data at hand and naturally
reflects the disproportion in cases and controls in the data

ﬂiz';nr
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Hypothesis test of best model

e In particular, derive the empirical distribution of the average
balanced testing accuracy for the best model:
- Randomize disease labels
- Repeat MDR analysis several times (1000?) to obtain the null
distribution of cross-validation consistencies and prediction

errors

8

Université o
de Liege | g




K Van Steen Seoul — February 2013

Sample Quantlles An Example Empirical Distribution

0% 0.045754 S -
25% 0.168814 o
50% 0.237763

> © T

=
75% 0.321027 3]

g

LL <
90% 0.423336
95% 0.489813 N
99% 0.623899 o

[ I I I |

99.99% 0.872345 0.2 0.4 0.6 0.8 1.0
100% 1

The probability that we would see results as, or more, extreme than for
instance 0.4500, simply by chance, is between 5% and 10%

(slide: L Mustavich)
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The MDR Software

e The MDR method is described in further detail by Ritchie et al. (2001)
and reviewed by Moore and Williams (2002).

e An MDR software package is available from the authors by request,
and is described in detail by Hahn et al. (2003).

e Download information and much more can be found at
http://www.multifactordimensionalityreduction.org/
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Historical notes about MB-MDR (cnt-ed)

e Follow-up: Model-Based MDR by Calle et al (2007)

Unlike other MDR-

like methods
(right), MB-MDR
breaks with the
tradition of cross-

validation to select

optimal multilocus
models with significant
accuracy estimates

Université
de Liege

Nl lhe e ped oree ~
"’/ Mo
{Plchmomous'?/,
"'H-\.,_\_\_hv{_,f
Yesl
.:"/ﬁ\-'““-a /,,,-"’“‘m.
Covariate(s ) <_Covariate(s)? >
'\_‘\ _-—"-’
-""\-\_\_\_\_/ -._\_H__'/
Yes/No
No l YesMNo
MDR GMDR

St Llru,/'

= ‘\Tc there discord m

T sib- 1111['5 /

-H"\-\./

Yes/MNo

T
~ Mo

= D chotomous”
""-\-\_\_ T \

‘r'e:;l

e _,--—"’ﬁ-'““-
Quﬁaﬁ@?}* t.hh_h_E't variate Ll_:-‘::-
T Yes/MNo l .
Mo l Yes/MNao
MDR-PDT PGMDR



K Van Steen Seoul — February 2013

Historical notes about MB-MDR
e Model-Based MDR by Calle et al (2008a)

- Rather, computation time is invested in optimal association tests
to prioritize multilocus genotype combinations and in statistically
valid permutation-based methods to assess joint statistical
significance

- Results of association tests are used to “label” multilocus
genotype cells (for instance: increased / no evidence/ reduced
risk, based on sign of “effect”) and to “quantify” the multilocus
signal wrt the trait of interest, “above and beyond lower order

signals”
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Historical notes about MB-MDR

e Model-Based MDR by Calle et al (2008a,b)

Table 3. MB-MDR first step analysis for interaction between SNP 40

and SNP 252 in the bladder cancer study

SNP 40 x SNP 252 Cases Controls OR p-value Category

genotypes

cl=(0,0) 88 77 1.01 0.9303 0
c2=(0,1) 102 114 0.73 0.0562 L
c3=(02) 38 34 0.98 1.0000 0
cd=(1.0) 50 59 0.76 0.1229 0
cd=(11) 96 37 2.68 0.0000 H
c6=(12) 18 28 0.55 0.0675 [
c7=(2,0) 12 6 1.99 0.3399 0
c8=(2,1) 14 18 0.67 0.3668 0
c9=(22) 6 6 0.84 1.0000 0

H: High risk; L: Low risk; 0: No evidence
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Fig. 1. Average Balanced Training accuracy (Acc) versus Average Balanced
Predictive accuracy (Pred) for the 100 models with higher balanced training
accuracy for the whole sample. First, second, third and forth order

interactions are considered.
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Historical notes about MB-MDR

e Model-Based MDR by Cattaert et al (2010) - fine-tuning MB-MDR
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- Pooling “alike” (for instance, all low-risk and all high-risk)

multilocus genotypes leads to statistic distribution that is

different from the theoretical distribution (data snooping)

- Stable score tests, one multilocus p-value and permutation-based

strategy (Cattaert et al 2010), rather than Wald tests, and relying on

MAF dependent reference distributions (Calle et al 2008)
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Historical notes about MB-MDR

e Model-Based MDR by Cattaert et al (2011) — genetic heterogeneity

Maodel 2, p = 0.5
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Historical notes about MB-MDR

e Model-Based MDR by Cattaert et al (2011) — maximimal power

Ritchie Model 1 (p=0.5) Ritchie Model 3 (p=0.25) Ritchie Model 5 (p=0.1)
- 3 - -
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2 4 4
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[ [ [
23 23 23
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Historical notes about MB-MDR

e Model-Based MDR by Van Lishout et al (2012 — under review) - speed
- MaxT algorithm V

- Association test statistics (parametric and non-parametric) V +

SNPs MBMDR-3.0.2 MBMDR-3.0.2 MBMDR-3.0.2 MBMDR-3.0.2
sequential execution sequential execution parallel workflow parallel workflow
Binary trait Continuous trait Binary trait Continuous trait
100 45 sec 1 min 35 sec <lsec < lsec
1,000 1 hour 16 minutes 2 hours 39 minutes 38 sec 1 min 17 sec
10,000 5 days 13 hours 11 days 19 hours 1 hour 3 min 2 hours 14 min
100,000 ~ 1.5 year ~ 3 years 4 days 9 hours ~ 9 days

The parallel workflow was tested on a cluster composed of 10 blades, containing each four
Quad-Core AMD Opteron(tm) Processor 2352 2.1 GHz.
The sequential executions were performed on a single core of this cluster.
The results prefixed by the symbol "=" are extrapolated.
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Historical notes about MB-MDR
e Model-Based MDR by Van Steen lab (2012 and +)

- Lower order effects correction (omit at cell-labeling step) V +
- Two-locus effect modifiers V

- Different faces of “dimensions” in dimensionality reduction +

V: implemented

+. under construction or in beta-testing
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Historical notes about MB-MDR
e Model-Based MDR by Van Steen lab (2012 and +)

Original Paper

Human Hum Hered 2004;58:82-92 Aacelved: June 30, 2004

-
T A
Heredll} DOI: 10.1159/000083029 Accepted after revision: September 23, 2004

MDR and PRP: A Comparison of
Methods for High-Order
Genotype-Phenotype Associations

L. Bastonea M. ReillyP D.J. RaderP A.S. Foulkese

2Division of Biostatistics, "Cardiovascular Division and Center for Experimental Therapeutics,
University of Pennsylvania School of Medicine, Philadelphia, Pa., and *Department of Biostatistics,
School of Public Health and Health Sciences, University of Massachusetts, Amherst, Mass., USA
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Historical notes about MB-MDR

e Model-Based MDR by Van Steen lab (2012 and +)

Original Paper

Hulna“o Hum Hered 2004;58:82-92
Heredll}r DOI: 10.1159/000083029

MDR and PRP: A Comparison of

Received: June 30, 2004
Accepted after revision: September 23, 2004

Methods for High-Order
Genotype-Phenotype Associatiol

L. Bastonea M. ReillyP D.J. RaderP A.S. Foulkese

2Division of Biostatistics, "Cardiovascular Division and Center for Experimental Therapeutics,
University of Pennsylvania School of Medicine, Philadelphia, Pa., and *Department of Biostatis|
School of Public Health and Health Sciences, University of Massachusetts, Amherst, Mass., US

) ) ) . Statistical methods suc
as multifactor dimensionality reduction (MDR), the comr
binatorial partitioning method (CPM), recursive partitior
ing (RP), and patterning and recursive partitioning (PRF
are designed to uncover complex relationships withot
relying on a specific madel for the interaction, and ar
therefore well-suited to this data setting. However, th
theoretical overlap among these methods and their relz
tive merits have not been well characterized. In thi
paper we demonstrate mathematically that MDR is
special case of RP
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Historical notes about MB-MDR

e Model-Based MDR by Van Steen lab (2012 and +)
- Dimension (1,2) = (SNP1,SNP2) Vv
- Dimension (1,2) = (SNP1, “categorized” continuous variable) V +

- Dimension (1,2) = (SNP1, genomic region with rare variants) +

Mk12345678

(Shi et al 2006, unsupervised clustering V: implemented

with RFs) +. under construction or in beta-testing
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Historical notes about MB-MDR

e Model-Based MDR by Van Steen lab (2012 and +)
- Dimension (1,2) = (pathwayl, pathway2) +

- Dimension (1,2) = +

0~0—0—0—0—0—0—0
Feature /

Continuous A A N A

S \ip O~~~

High Dimensional ine : r
00—~

Tnput Space 4
OA—0—0—-0-0—0—0

A0 amm

0-0~0—0-0—0—0—0
Discrete
Low Dimensional
QOutput Space

OMs: Bullinaria 2004)
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Key references about MB-MDR

Methodological papers

Calle, M. L,, Urrea, V., Vellalta, G., Malats, N. & Van Steen, K. (2008a) Model-Based
Multifactor Dimensionality Reduction for detecting interactions in high-dimensional genomic
data. Technical Report No. 24, Department of Systems Biology, Universitat de Vic,
http://www.recercat.net/handle/2072/5001 [technical report, first mentioning MB-MDR]
Calle M, Urrea V, Malats N, Van Steen K. (2008) Improving strategies for detecting genetic

patterns of disease susceptibility in association studies — Statistics in Medicine 27 (30): 6532-
6546 [MB-MDR with Wald tests and MAF dependent empirical test distributions]

Calle ML, Urrea V, Van Steen K (2010) mbmdr: an R package for exploring gene-gene
interactions associated with binary or quantitative traits. Bioinformatics Applications Note
26 (17): 2198-2199 [first MB-MDR software tool]

Cattaert T, Urrea V, Naj AC, De Lobel L, De Wit V, Fu M, Mahachie John JM, Shen H, Calle ML,
Ritchie MD, Edwards T, Van Steen K. (2010) FAM-MDR: a flexible family-based multifactor
dimensionality reduction technique to detect epistasis using related individuals, PLoS One 5
(4). [first implementation of MB-MDR in C++, with improved features on multiple testing

g
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correction and improved association tests + recommendations on handling family-based
designs]

Cattaert T, Calle ML, Dudek SM, Mahachie John JM, Van Lishout F, Urrea V, Ritchie MD, Van
Steen K (2010) Model-Based Multifactor Dimensionality Reduction for detecting epistasis in
case-control data in the presence of noise (invited paper). Ann Hum Genet. 2011
Jan;75(1):78-89 [detailed study of C++ MB-MDR performance with binary traits]
Mahachie John JM, Cattaert T, De Lobel L, Van Lishout F, Empain A, Van Steen K (2011)
Comparison of genetic association strategies in the presence of rare alleles. BMC
Proceedings, 5(Suppl 9):S32 [first explorations on C++ MB-MDR applied to rare variants]
Mahachie John JM, Cattaert T, Van Lishout F, Van Steen K (2011) Model-Based Multifactor
Dimensionality Reduction to detect epistasis for quantitative traits in the presence of error-
free and noisy data. European Journal of Human Genetics 19, 696-703. [detailed study of
C++ MB-MDR performance with quantitative traits]

Van Steen K (2011) Travelling the world of gene-gene interactions (invited paper). Brief
Bioinform 2012, Jan; 13(1):1-19. [positioning of MB-MDR in general epistasis context]
Mahachie John JM, Cattaert T, Van Lishout F, Gusareva ES, Van Steen K (2012) Lower-
Order Effects Adjustment in Quantitative Traits Model-Based Multifactor Dimensionality
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Reduction. PLoS ONE 7(1): e29594. d0i:10.1371/journal.pone.0029594 [recommendations
on lower-order effects adjustments]

Mahachie John JM, Van Lishout F, Gusareva ES, Van Steen K (2012) A Robustness Study of
Parametric and Non-parametric Tests in Model-Based Multifactor Dimensionality Reduction
for Epistasis Detection — under review [recommendations on quantitative trait analysis]
Van Lishout F, Mahachie John JM, Gusareva ES, Urrea V, Cleynen |, Theatre E, Charloteaux B,
Calle ML, Wehenkel L, Van Steen K (2012) An efficient algorithm to perform multiple testing
in epistasis screening — under review [C++ MB-MDR made faster!]

Stay tuned for:
+ Applications of MB-MDR to screen for GxG interactions with a fixed Environmental or
Genetic factor
+ Applications of MB-MDR to screen for genetic interactions involving genomic regions
harboring rare variants
+ ... and much more!!!!

Contact: f.vanlishout@ulg.ac.be (C++ MB-MDR software engineer)
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An example on Alzheimer’s disease
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First hurdle: Selection of most appropriate method

e Honest methods comparisons should / can highlight the “core” (the
ABC) of each method:

A: Pre-processing (screening); B: core; C: multiple testing

EpiCruncher
(Van Steen Iab Bonferroni Permutations z - E
’ LR test Score test LR test Score test =2
in preparation) Test P-value Test P-value Test P-value Test P-value 5 Z 2
statistic statistic statistic statistic ® =
M=1|M=5| M=1|M=5|M=1|M=5|M=1| M=5|M=1|M=5|M=1|M=5| M=1| M=5 | M=1 | M=5
rs17116117 | rs2513574 X X X X X X X X X X X X X X X X X X X
rs17116117 rs2519200 X X X X X X X X X X X X X X X X X X X
rs17116117 | rs4938056 X X X X X X X X X X X X X X X X X X
rs17116117 | rs1713671 X X X X X X X X X X X X X X X X X
rs13126272 rs11936062 X X X X X X X X X X X X X X X X X
rs17116117 | rs7126080 (NN X | X | x x | x [ x| «x
rs3770132 rs1933641 X X X X
rs12339163 | rs1933641
rs12853584 | rs1217414 [N X X x | x
rs17116117 | rs1169722
number significant 6 6 6 6 7 5 7 5 6 7 6 6 7 6 7 6 6 3
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Protocol for GWAI analysis

Alzheimerdisease (AlzD):
2259 cases [ 6017 controls

0. Genotyping and genotypes calling: “\/
582,892 SNPs

| v

1. Sample 5 quality control: v
HWE test (P> 8.6e-08)
marker allele frequency (MAF > 0.05) 474,893 SNPs

call rate » 98% T~

Exhaustive epistasis screening ‘ ‘ Selective epistasis screening

' ¥

2.1.aLD pruning (e.g.5W57.5): 2.1.b Markers prioritization (Biofilter): \/’ 2.1.b Selection of SNPs
312,480 SNPs window size 52 bp, wingpw increment1 bp 1?’7 canlclil'dategenes collected :"Alzheimer 29,091 SNPs basingon theirfunctio 3,689 SNPs
LD "2 threshold 0.75 disease" KEEG pathway v (SNPper-SNP Finder)
2.2.a Exhaustive genome-wide screening 2.2.b LD pruning (e.g. SV57.5): [~~__—"] | 2.1bSelection of SNPs
for pair-wise SNP interactions window size 52 bp, window increment 1 bp 19.331 sNps | | fromcandidate genes
(BOOST analysis) LDr*2 threshold 0.75 ’ 234 SNPs

v (datafrom literature)
|

2.3.b Genome-wide screening for pair-wise
SNPinteractions (adjusted for the main effects)
(MB-MDR,p analysis)

3. Replication analysis with alternative

methods for epistasis detection: follow up
# theselected setof markers

(MB-MDR, analysis, SD plot, logistic

regression-based methods)

4. Replication of epistasis in the independent
data and biological validation
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Available “knowledge” about epistasis: Route 4

Gene Gene name Function Location Epistatic SNPs Main effect for AlzD Population (N cases/N controls) Reference
INS Insulin Glucose metabolism 11p15.5 rs689 no Germans (104/123) Brune et al., 2003
PPARA  Peroxisome proliferator-activated  Glucose and lipid metabolism 22q13.31 rs1800206 yes Northern Europeans (336/2426) Kélsch et al., 2012

receptor alpha
IL1A Interleukin 1 alfa Inflammatory cytokine 2q13 rs3783550 no Northern Europeans (336/2426) Heunetal., 2012
PPARA  Peroxisome proliferator-activated  Glucose and lipid metabolism 22913.31 rs1800206 yes

receptor alpha
IL1B Interleukin 1 beta Inflammatory cytokine 2913 rs16944 no Northern Europeans (336/2426) Heun et al., 2012
PPARA  Peroxisome proliferator-activated  Glucose and lipid metabolism 22g13.31 rs1800206 yes

receptor alpha
IL10 Interleukin 10 Inflammatory cytokine 1932.1 rs1800896 yes Northern Europeans (336/2426) Heun et al., 2012
PPARA  Peroxisome proliferator-activated  Glucose and lipid metabolism 22913.31 rs4253766 no

receptor alpha
ILIA Interleukin 1 alfa Inflammatory cytokine 2913 rs1800587 no Northern Europeans (336/2426) Combarros et al., 2010
DBH b-Hydroxylase Onverts dopamine to norepinephrine in the  9q34.2 rs1611115 yes

synaptic vesicles of postganglionic
sympathetic neurons
TF Transferrin Iron metabolism 3g22.1 rs1049296 no UK (191/269) Robson et al., 2004
HFE Hemochromatosis 6p22.2 rs1800562 yes Caucasians USA (1166/1404) Kauwe et al., 2010
North Europeans (336/2426) Lehmann et al., 2012

TF Transferrin Iron metabolism 3g22.1  rs1130459 no North Europeans (336/2426) Lehmann et al., 2012
HFE Hemochromatosis 6p22.2 rs1799945 yes
MTHFR Methylenetetrahydrofolate Homocysteine metabolism useful for normal  1p36.22  rs1801131 yes Indians (80/120) Mansoori et al., 2012

reductase brain functioning
IL6 Interleukin 6 Pro-inflammatory cytokine 7p15.3 rs1800795 no
IL10 Interleukin 10 Limit inflammation in the brain 1g932.1  rs1800871 yes North Spains (232/191), Infante et al., 2004
IL6 Interleukin 6 Pro-inflammatory cytokine 7p15.3 rs2069837 yes North Europeans (336/2426) Combarros et al., 2009
ABCA1  ATP-binding cassette transporter  Intracellular cholesterol transport and 9g31.1 rs2422493 no Spanish (631/731) Rodriguez-Rodriguez et al., 2010

Al maintance of cell cholesterol balance
NPC1 Niemann-Pick C1 18g11.2 rs18050810 no

rs4800488
rs2236707

rs2510344
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LRP1 low density lipoprotein receptor-  Neuronal uptake of cholesterol 12913.3  rs1799986 no Spanish (246/237) Vazquez-Higuera et al., 2009
related protein 1
MAPT  Microtubule-associated protein tau 17921.33 rs2471738 no
GSK3B  Glycogen synthase kinase-3 beta Abnormal hyperphosphorylation of tau, 3913.33  rs334558 no Spanish (246/237) Vazquez-Higuera et al., 2009
neuronal uptake of cholesterol

CDK5R1 Cyclindependent kinase 5 17911.2  rs735555

NR1H2 Liver X receptor beta Cholesterol metabolism 19913.33 rs1052533 no Spanish (414/442) Infante et al., 2010
rs1405655

HMOX1 Heme oxygenase-1 22912.3  rs2071746

Different levels

e Genetic marker
® Locus

® Gene

e Window including either one of the previous

e Pathway
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Revised analysis for candidate gene pairs

e MB-MDR analysis: 294 SNPs selected from France_AlzD panel of SNPs

MTHFR IL10 ILIA Jl11B TF HFE Il6 ABCA1 DBH INS LRP1 CDK5R1 MAPT NPC1 NRIHZ HMOX1 PPARA

+ ns + + + + + + + + ns + + + ns + MTHFR
+ + + ns ns + + ns + ns + ns ns + + IL10
ns + + + + ns + ns ns + ns ns ns + IL1A
+ ns ns + ns ns + ns + + ns ns ns IL1B
+ + + + ns + ns + + + + + TF
+ + ns + + ns + + + ns + HFE
+ ns ns ns + + + + + IL6
+ ns + + + + + ABCA1
+ ns + + ns + + DBH
"+" - at least one SNP pair from the T T R
ns + ns ns + + LRP1
corresponding genes was s ons ns ns ns | CDKSRI
+ ns + + MAPT
associated with AlzD ns s s | wec
ns ns NRIHZ2
(the marginal p-value < 0.05 for the I N

MB-MDR;p analysis)

Replication is highlighted by green;
no replication is highlighted by red.
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Replication and validation of GWAIs:
An impossible task?
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(Mission Impossible @ google)
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Replication

e Replicating an association is the “gold standard” for “proving” an
association is genuine

e Most epistasis signals underlying complex diseases will not be of
large effect. It is unlikely that a single study will unequivocally
establish an association without the need for replication

e Guidelines for replication studies include that these should be of
sufficient size to demonstrate the effect ... and should involve the
same SNPs for testing ....

“Replication as a concept should be revised in the context of GWAI studies”
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Optimal conditions for GWA (Interaction) replication

e Showing modest to strong statistical significance

e Having common minor allele frequency (>0.05)

e Modest to strong genetic effect sizes (parametric paradigms)

Effect size @ ~~~~~~
50.0f| e .

3.0/ ¥
e = = Low-frequency
variants with
intermediate effect

Compare to the

Rare variants of

Modest

small effect . .
4| | ve hard to dentity diagonal focus region
C by genetic means i .
Low \ of GWAs
———— - (Manolio et al. 2009)

0.001 ——

Very rare

Allele frequency
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Validation
e Validation is not replication:

Random variation

F 3

Original
study

&

Sample

Grlgh Systematic variation

_ Different

population

Replication

" population

Sample

L

Validation

(Igl et al. 2009)
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Challenges and opportunities
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Which findings to pursue ~ replication / interpretation?

A selection of challenges:

e Restrict attention to the same chromosome as the hits or not?
e What are the LD-friends related to our pairs of interest?

e Target pairs that can be “replicated”?
- Different steps in the GWAI process
- Different approaches within one step

e Target pairs that can be mapped to underlying biological epistasis
networks or pathways?
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Challenge 1

e Same chromosome or not? (Composites in LD = haplotype analysis)

2
r =0.110
2
r =0.047
2
r =0.022

2
r =0.027

2
r =0.027

v vy

v

SNP SNP position Gene Main effect MAF
rs17116117 chr11:113801591 HTR3B 0,001 0,052
rs2513574 chr11:113681305 USP28 >0.05 0,123
rs2519200 chr11:113684809 USP28 >0.05 0,238
rs1713671 chr11:113674838 USP28 >0.05 0,416
rs4938056 chr11:113786539 HTR3B >0.05 0,400
rs11936062 chr4:185721370 SLED1 >0.05 0,165
rs13126272 chr4:185731940 ACSL1 0,001 0,342
rs1217414 chrl:114412667 PTPN22 >0.05 0,273
rs12853584 chrl3:31279946  between USPL1/ALOX5AP >0.05 0,272
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Challenge 2
e What are the LD-friends to our pairs of interest?

PTPN22

ALOXSAP |

........
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K Van Steen

e Synergy Disequilibrium (SD) plots: LD # interaction

chromosome 13

chromosome 1
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Challenge 3

e What is replication?
Application of filtering on WTCCC Rheumatoid Arthritis (RA)

;%S‘% Before Biofilter: 388 pairs

N After Biofilter : 517 pairs

it .
m Owerlap: 223 palrs

165 “lost” pairs Q\“w%x :
. _ NN
contain 191 SNPs: éé%%%
— 18 of them passed AR
the Biofilter. E§§§%§ ;
— 173 did not: % RN
. gznceasn be mapped to ﬁ\%%%% : - f
: SN new pairs after
* 118 in intergenic %;\:é\:\\\%% Biofilter: is Bonferroni
regions. ‘ correction too severe?
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e On the same Bio-filtered data, up-scaled logistic regression software
(BOOST; Wan et al. 2010) reports 512 significant pairs and MB-MDR 401;

395 significant pairs in common for RA ...

C-J -

&
e -
2 © i
g v .
I 3 R < e
] ) o =
8 S ot o 'o'%,._"':’

3 L Ay . ol
- '@.}l- k:..?, N RQ

u'—'-" -

(
I 1 1 1 1
G0 &0 100 120 140

MB-MDR Chi sq

117 pairs detected by BOOST but not by MB-MDR!
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K Van Steen

e SD between SNPs in pairs detected by BOOST but not by MB-MDR ...
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e Different approaches exist within a single step of the GWAI process

- Which epistasis detection method to choose?

- We have chosen MB-MDR and BOOST but there is an abundance
of epistasis methods (Van Steen 2011) and even a larger
compendium of “comparison papers” is available ... Was our
choice a clever one?

- Two widely used criteria that help making a choice are:

" Power

* Type | error (false positive rate)
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Power (pure epistasis scenario’s)

Model B1, no GH

Model R2, no GH

Model B3, no GH

Model R4, no GH

Maodel RS, no GH

Model R6, no GH
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0& BE 05 A 06 1 0.6 1 0.6
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D os 08 o8 0B
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BOOST (dark blue)

EpiCruncher optimal options (light blue)

MB-MDR (green)

PLINK epistasis (dark yellow)

PLINK fast epistasis (light yellow)

EPIBLASTER (red)
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False positives (pure epistasis scenario’s)

Model R1, no GH Model R2, no GH Model R3, no GH Meodel R4, no GH Model RS, no GH Model R6, no GH
015 016 018 015 0.15 016
o1d 010 o1d 0.10 o1d 010
045 --I--I-- -----------I- D05 iz === === 005 T-===~"pae ~ @@~~~ """ l- 0.05 T~ I T e I- BRG himennamep enrn I
040 I 0.0 I I' l 000 I II 0.00 1 I II 000 I I I 0.0 l I I
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R 015 D15 0,15 o1 015
D10 a0 010 010 LR a0
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e (Concerns:

- Are the methods comparisons “honest”?
- What is the “core” (the ABC) of the method?
= A: Pre-processing (screening); B: core; C: multiple testing

EpiCruncher
Bonferroni Permutations =z E
LR test Score test LR test Score test @ 2 2
Test P-value Test P-value Test P-value Test P-value 5 = E
statistic statistic statistic statistic ® =
M=1| M=5|M=1|M=5|M=1|M=5|M=1| M=5|M=1|M=5|M=1|M=5|M=1| M=5| M=1 | M=5
rs17116117 | rs2513574 X X X X X X X X X X X X X X X X X X X
rs17116117 | rs2519200 X X X X X X X X X X X X X X X X X X X
rs17116117 | rs4938056 X X X X X X X X X X X X X X X X X X
rs17116117 | rs1713671 X X X X X X X X X X X X X X X X X
rs13126272 rs11936062 X X X X X X X X X X X X X X X X X
rs17116117 | rs7126080 |[NGMM X | X | X x | x | x | x
rs3770132 rs1933641 X X X X
rs12339163 rs1933641 X X X X
rs12853584 | rs1217414 | X X x | x
rs17116117 | rs1169722 X
number significant 6 6 6 6 7 5 7 5 6 7 6 6 7 6 7 6 6 3 3

BOOST
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e There is a need for investigating the “information overlap” and
“information complement” induced by different methodologies when
applied to a variety of (reference?) data. This will allow the
development of genuine “ensemble” methods (ongoing — Van Steen

lab), will facilitate the interpretation and replication of findings.
Ranks — same input WTCCC CD dataset based on 7,072 SNPs

Epistasis Detection Method

SNP Pair MBMBDREpiCruncherBOOSTPLINKEpiBlaster
rs17116117rs2513574 1 1 1 1 1
rs17116117rs2519200 2 2 2 2 2
rs11936062rs131262723 3 3 179 100
rs17116117rs1713671 4 4 4 5 100
rs17116117rs4938056 5 5 5 3 100
rs1217414 rs128535846 6 7 251 100
rs1169722 rs171161177 7 9 82 4
rs17116117rs7126080 8 8 6 81 100
rs13126272rs4862419 9 9 8 198 100

rs1933641 rs6099309 10 309 308 297 100
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Challenge 4

e Target pairs that can be mapped to underlying biological epistasis

networks or pathways?

e Relying on criteria for assessing the functional significance of each

involved functional variant separately?

Criteria

Nucleotide sequence

Evolutionary
conservation

Population genetics

Experimental evidence

Exposures (for example,
genotype—environment
interaction studies)

Epidemiological
evidence

Strong support for
functional significance

Variant disrupts a known functional
or structural motif

Consistent evidence from multiple
approaches for conservation across
species and multigene families

In the absence of laboratory error, strong
deviations from expected population
frequencies in cases and/or controls in a
particular ethnicity

Consistent effects from multiple lines of
experimental evidence; effect in human
context is established; effect in target
tissue is known

Variant is known to affect the
metabolism of the exposure in
the relevant target tissue

Consistent and reproducible reports of

Moderate support for
functional significance

Variant is a missense change or disrupts a

putative functional motif; changes to protein

structure might occur

Evidence for conservation across species
or multigene families

In the absence of laboratory error, moderate
to small deviations from expected population
frequencies in cases and/or controls; effects

are not well characterized by ethnicity

Some (possibly inconsistent) evidence for
function from experimental data; effect in
human context or target tissue is unclear

Variant might affect metabolism of the
exposure or one of its components;
effect in target tissue might not be known

Reports of association exist;

moderate-to-large magnitude associations replication studies are not available

(Rebbeck et al 2004)

Evidence against
functional significance

Variant disrupts a non-coding
region with no known functional or
structural motif

Nucleotide or amino-acid residue
not conserved

Population genetics data indicates
no deviations from expected
proportions

Experimental evidence consistently
indicates no functional effect

Variant does not affect metabolism
of exposure of interest

Prior studies show no effect of
variant
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e Relying on criteria for assessing the functional significance of gene-
gene interaction patterns?

II)

Would involve overlaying “statistical” epistasis networks with

“biological” networks (e.g., linking hubs in “statistical” epistasis networks to

functional groups or pathways)

(Statistical epistasis network adapted from Hu et al. 2011)
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Meta-GWAI studies

e Given the availability of a comprehensive meta-analysis toolbox, it
may be surprising that hardly any meta-GWAIs have been published
as the core topic of the publication.

e This may in part be explained by the absence of strict guidelines or
best practices for epistasis analysis, and the fact that new epistasis
screening approaches arise every day.

e Additional complicating factors include:

- Traditional meta-analysis methods in genetic association studies
usually assume a specific genetic model of action to summarize
the effect of genetic markers on a phenotype.

- GWA imputation strategies ensure that different data sets are
made comparable, but most be revised in the context of GWAIs.
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Omics integrative approaches for GWAIs and GWElIs
Example in GWAIs
e Before and after modeling using e.g. Biofilter
- Assess and incorporate “optimal” scoring systems to
accumulate evidence from these data bases
- Allow for uncertainty involved in the data source entries
. Acknowledge the complementary characteristics of each of the
available data sources
- Allow for different assignment strategies from genetic variants
to genes
Example in GWEIs
e When environmental epigenetic effects are operating, a heavily
biology assistant-driven approach is required
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Proof of concept
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Spondylitis

nature
genetlcs

Interaction between ERAPI and HLA-B27 in ankylosing
spondylitis implicates peptide handling in the mechanism
for HLA-B27 in disease susceptibility

The Australo-Anglo-American Spondyloarthritis Consortium! (TASC) & the Wellcome Trust Case Control
Consortium 2 (WTCCC2)!

Ankylosing spondylitis is a common form of inflammatory arthritis predominantly affecting the spine and pelvis that occurs in
approximately 5 out of 1,000 adults of European descent. Here we report the identification of three variants in the RUNX23, LTBR-
TNFRSF1A and IL12B regions convincingly associated with ankylosing spondylitis (P < 5 x 1078 in the combined discovery and
replication datasets) and a further four loci at PTGER4, TBKBP1, ANTXR2 and CARD?Y that show strong association across all our
datasets (P < 5 x 107 overall, with support in each of the three datasets studied). We also show that polymorphisms of ERAPT,
which encodes an endoplasmic reticulum aminopeptidase involved in peptide trimming before HLA class | presentation, only
affect ankylosing spondylitis risk in HLA-B27—positive individuals. These findings provide strong evidence that HLA-B27 operates
in ankylosing spondylitis through a mechanism involving aberrant processing of antigenic peptides.



K Van Steen

Seoul — February 2013

Psoriasis

nawre
genetlcs

A genome-wide association study identifies new psoriasis
susceptibility loci and an interaction between HLA-C

and ERAPI

Genetic Analysis of Psoriasis Consortium & the Wellcome Trust Case Control Consortium 22

To identify new susceptibility loci for psoriasis, we
undertook a genome-wide association study of 594,224
SNPs in 2,622 individuals with psoriasis and 5,667 controls.
We identified associations at eight previously unreported
genomic loci. Seven loci harbored genes with recognized
immune functions (IL28RA, REL, IFIH1, ERAP1, TRAF3IP2,
NFKBIA and TYK2). These associations were replicated in
9,079 European samples (six loci with a combined P < 5 x
10~% and two loci with a combined P < 5 x 1077). We also
report compelling evidence for an interaction between the
HILA-C and ERAPT loci (combined P = 6.95 x 10-%). ERAPT
plays an important role in MHC class I peptide processing.
ERAPT variants only influenced psoriasis susceptibility in
individuals carrying the HLA-C risk allele. Our findings
implicate pathways that integrate epidermal barrier
dysfunction with innate and adaptive immune dysregulation
in psoriasis pathogenesis.

Subjects for the GWAS discovery set were recruited from the UK and
Ireland and were of self-reported European ancestry (Supplementary
Table 1). Individuals with psoriasis (cases) were genotyped on the
Nlumina Human660W-Quad, and controls were genotyped on the
Nlumina custom Human1.2M-Duo (Supplementary Note), with a
primary analysis performed on the overlapping set of SNPs. We per-
formed stringent data quality control procedures (Online Methods),
resulting in a GWAS dataset comprising 2,178 individuals with psoria-
sis and 5,175 controls genotyped at 535,475 SNPs. Principal compo-
nents analysis of the study data showed the first principal component
stratified individuals by population origin (Supplementary Fig. 1b).
We performed single SNP analysis using score tests under a logistic
regression model which assumed multiplicative effects, including the
first principal component as a covariate and we accounted for uncer-
tainty in genotype calls as implemented in SNPTEST (see URLs).
After removal of known and replicated psoriasis association loci, the
overdispersion factor!? of association test statistics (Agc) was 1.045



K Van Steen Seoul — February 2013

Acknowledgments (MB-MDR)




K Van Steen Seoul — February 2013

Acknowledgments (Alzheimer’s

Kristel Van Steen (PI)

Montefiore Institute / GIGA-R,
University of Liege,
Belgium

Nilufer Taner

Mayo Clinic Rochester, Departments of
Neurology and Neuroscience, Rochester,
USA

Kristel Sleegers

Neurodegenerative Brain Diseases Group,

Elena Gusareva Department of Molecular Genetics, VIB,
Montefiore Institute / GIGA-R, U"I'V_efsltv of Antwerp,

University of Liege, Belgium

Belgium

Jean-Charles Lambert

INSERM U744, Lille, France

Institut Pasteur de Lille, Lille, France
Universite de Lille Nord de France, Lille,
France




